已知区域 $D$ 由曲线 $y=\sqrt{2 x-x^2}, y=\sqrt{2 x}$ 与直线 $x=2$ 围成,函数 $f(x, y)$ 在 $D$ 上连续,则对于二重积分 $\iint_D f(x, y) d x d y$ ,下列表达式错误的是( )。
A
$\int_0^2 d x \int_{\sqrt{2 x-x^2}}^{\sqrt{2 x}} f(x, y) d y$
B
$\int_0^1 d y \int_{\frac{y^2}{2}}^{1-\sqrt{1-y^2}} f(x, y) d x+\int_0^1 d y \int_{1+\sqrt{1-y^2}}^2 f(x, y) d x+\int_1^2 d y \int_{\frac{y^2}{2}}^2 f(x, y) d x$
C
$\int_0^{\frac{\pi}{4}} d \theta \int_{2 \cos \theta}^{\frac{2}{\cos \theta}} f(r \cos \theta, r \sin \theta) r d r+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d \theta \int_{2 \cos \theta}^{\frac{2 \cos \theta}{\sin ^2 \theta}} f(r \cos \theta, r \sin \theta) r d r$
D
$\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{2}{\cos \theta}} f(r \cos \theta, r \sin \theta) r d r+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d \theta \int_{\frac{2}{\sin \theta}}^{\frac{2 \cos \theta}{2} \theta} f(r \cos \theta, r \sin \theta) r d r-\int_0^{\frac{\pi}{2}} d \theta \int_0^{2 \cos \theta} f(r \cos \theta, r \sin \theta) r d r$
E
F