已知 $z(u, v)$ 具有二阶连续偏导数,自变量代换 $\left\{\begin{array}{l}u=x+a y, \\ v=x-2 y\end{array}\right.$ 使得
$$
6 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial x \partial y}-\frac{\partial^2 z}{\partial y^2}=2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}
$$
化为不含 $\frac{\partial^2 z}{\partial u^2}$ 但含 $\frac{\partial^2 z}{\partial u \partial v}$ 的方程.
(1)求常数 $a$ ;
(2)求函数 $z(u, v)$ 的表达式.