• 试题 ID 29086


设 $f(x)$ 在 $(-\infty,+\infty)$ 上具有连续的二阶导数,满足 $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 1} \frac{f(x)}{x-1}=1$ ,且 $\int_0^1\left[f^{\prime}(x)\right]^2 d x=1$ ,证明:
( I ) $\int_0^1\left|f^{\prime}(x)\right| d x \leqslant 1$ ;
(II)存在 $\xi \in(0,1)$ ,使得 $f(\xi)+f^{\prime \prime}(\xi)=0$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见