设 $\boldsymbol{A}$ 是 3 阶矩阵, $\boldsymbol{B}=\left(\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right)$ 是三阶可逆矩阵,且 $\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{lll}b_{12} & 2 b_{11} & -3 b_{13} \\ b_{22} & 2 b_{21} & -3 b_{23} \\ b_{32} & 2 b_{31} & -3 b_{33}\end{array}\right)$ ,则 $\boldsymbol{A}$ 相似于
A
$\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right)$ .
B
$\left(\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ .
C
$\left(\begin{array}{ccc}0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -3\end{array}\right)$ .
D
$\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & 0\end{array}\right)$ .
E
F