设 $\boldsymbol{A}$ 为可逆矩阵,令 $\boldsymbol{P}_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \boldsymbol{P}_2=\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,则 $\boldsymbol{A}^{-1} \boldsymbol{P}_1^{2022} \boldsymbol{A} \boldsymbol{P}_2^{-1}$ 等于
A
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ .
B
$\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ .
C
$\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ .
D
$\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ .
E
F