• 试题 ID 31612


设 $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 3 & 9 \\ 2 & 0 & 6 \\ -3 & 1 & -7\end{array}\right), \boldsymbol{B}$ 为3阶非零矩阵,$\alpha_1=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right), \alpha_2=\left(\begin{array}{l}a \\ 2 \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{l}b \\ 1 \\ 0\end{array}\right)$ 为 $\boldsymbol{B} \boldsymbol{x}=\mathbf{0}$的解向量,且 $\boldsymbol{A x}=\alpha_3$ 有解.
(1)求常数 $a, b$ .
(2)求 $\boldsymbol{B} \boldsymbol{x}=\mathbf{0}$ 的通解.
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见