科数网
试题 ID 31683
【所属试卷】
新东方高等数学《基础训练30题》微分方程与多元微积分
设函数 $y(x)$ 满足方程
$$
y(x)=x^3-x \int_1^x \frac{y(t)}{t^2} \mathrm{~d} t+y^{\prime}(x), x>0
$$
且 $\lim _{x \rightarrow+\infty} \frac{y(x)}{x^3}=\frac{2}{3}$ .求函数 $y(x)$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $y(x)$ 满足方程
$$
y(x)=x^3-x \int_1^x \frac{y(t)}{t^2} \mathrm{~d} t+y^{\prime}(x), x>0
$$
且 $\lim _{x \rightarrow+\infty} \frac{y(x)}{x^3}=\frac{2}{3}$ .求函数 $y(x)$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见