• 试题 ID 31690


设 $f(x, y)=\left\{\begin{array}{l}\frac{\sin \left(x^2+y^2\right)}{x^2+y^2} \arctan \left(1+x^2+y^2\right), x^2+y^2 \neq 0, \\ \frac{\pi}{2}, \quad x^2+y^2=0,\end{array}\right.$ 若平面区域 $D: x^2+y^2 \leqslant a^2$ ,则 $\lim _{a \rightarrow 0^{+}} \frac{\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y}{\pi a^2}=$
A $\frac{\pi}{2}$ .
B $\frac{\pi}{4}$ .
C $\frac{\pi}{8}$ .
D 0 .
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见