当 $x \rightarrow 0$ 时,以下无穷小量阶数最高的是
A
$\int_0^{\sin x}\left[(1+t)^t-1\right] \mathrm{d} t$ .
B
$\int_0^{\sin x^2}(1+t)^{\frac{1}{t}} \mathrm{~d} t$ .
C
$\int_0^{\sin x}\left[\mathrm{e}-(1+t)^{\frac{1}{t}}\right] \mathrm{d} t$ .
D
$\int_0^{\sin ^2 x}\left(t \mathrm{e}^t-t\right) \mathrm{d} t$ .
E
F