• 试题 ID 33280


设 $f(x)$ 是 $[0,1]$ 上单调增加的连续函数,则
A $\int_0^{\int_0^1 e^{-t^2} \mathrm{~d} t} f(x) \mathrm{d} x \geqslant \int_0^1 f(x) \mathrm{e}^{-x^2} \mathrm{~d} x$ .
B $\int_0^{\int_0^1 e^{-t^2} \mathrm{~d} t} f(x) \mathrm{d} x \leqslant \int_0^1 f(x) \mathrm{e}^{-x^2} \mathrm{~d} x$ .
C $\int_0^{\int_0^1 e^{-t^2} \mathrm{~d} t} f(x) \mathrm{d} x \geqslant \int_0^1 f(x) \mathrm{d} x$ .
D $\int_0^{\int_0^1 e^{-t^2} \mathrm{~d} t} f(x) \mathrm{d} x \leqslant \int_0^1 f(x) \mathrm{d} x$ .
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见