设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{\alpha}, \boldsymbol{\beta}$ 为三维列向量.已知 $\boldsymbol{\alpha}, \boldsymbol{\beta}$ 线性无关,且 $\boldsymbol{A} \boldsymbol{\alpha}=2 \boldsymbol{\beta}, \boldsymbol{A} \boldsymbol{\beta}=2 \boldsymbol{\alpha}$ .记 $f(\lambda)=|\lambda \boldsymbol{E}-\boldsymbol{A}|$ ,若 $f(0)=12$ ,则 $f(5)=$