线性代数《行列式》习题基础训练



单选题 (共 2 题 ),每题只有一个选项正确
设 $\alpha _1, \alpha _2, \alpha _3, \beta _1, \beta _2$ 都是 4 维列向量, 且 4 阶行列式 $\left| \alpha _1, \alpha _2, \alpha _3, \beta _1\right|=m,\left| \alpha _1, \alpha _2, \beta _2, \alpha _3\right|=n$, 则 4 阶行列式 $\left| \alpha _3, \alpha _2, \alpha _1, \beta _1+ \beta _2\right|$ 等于
$\text{A.}$ $m+n$ $\text{B.}$ $-(m+n)$ $\text{C.}$ $n-m$ $\text{D.}$ $m-n$

设 $D=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|, A_{i j}$ 为 $D$ 的 $(i, j)$ 元的代数余子式, 则 $A_{31}+2 A_{32}+3 A_{33}=$
$\text{A.}$ $\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 1 & 2 & 3\end{array}\right|$ $\text{B.}$ $\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 1 & -2 & 3\end{array}\right|$ $\text{C.}$ $\left|\begin{array}{lll}a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & 2 \\ a_{31} & a_{32} & 3\end{array}\right|$ $\text{D.}$ $\left|\begin{array}{llc}a_{11} & a_{12} & 1 \\ a_{21} & a_{22} & -2 \\ a_{31} & a_{32} & 3\end{array}\right|$

解答题 (共 5 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算行列式 $\left|\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right|$

计算 $\left|\begin{array}{cccc}
1 & b_1 & 0 & 0 \\
-1 & 1-b_1 & b_2 & 0 \\
0 & -1 & 1-b_2 & b_3 \\
0 & 0 & -1 & 1-b_3
\end{array}\right|=$

计算$\left|\begin{array}{cccc}
-a_1 & 0 & 0 & 1 \\
a_1 & -a_2 & 0 & 1 \\
0 & a_2 & -a_3 & 1 \\
0 & 0 & a_3 & 1
\end{array}\right|=$

已知方程 $\left|\begin{array}{ccc}x-2 & 0 & 0 \\ -3 & x-1 & a \\ 2 & a & x-1\end{array}\right|=0$ 有二重根, 求满足条件的常数 $a$ 及方程的根.

设 $A =\left[ \alpha _1, \alpha _2, \alpha _3\right]$ 是 3 阶矩阵, 且 $| A |=4$, 若

$$
B =\left[ \alpha _1-3 \alpha _2+2 \alpha _3, \alpha _2-2 \alpha _3, 2 \alpha _2+ \alpha _3\right],
$$
则 $| B |=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。