考研数学
重点科目
其它科目

科数网

试卷61

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $m, n$ 均为正整数, 并且 $m < n$, 设 $\boldsymbol{A}$ 为 $m \times m$ 的矩阵, $\boldsymbol{B}$ 为 $m \times n$ 的矩阵, $\boldsymbol{C}$ 为 $n \times m$ 的矩阵, 已知 $\boldsymbol{A B C}=\boldsymbol{E}$, 设 $\boldsymbol{A}^*$ 为 $\boldsymbol{A}$ 的伴随矩阵, 则下列说法正确的个数有 ( ) 个
(1). $\boldsymbol{B C A}=\boldsymbol{E}$
(2). $C A B=E$
(3). $C^* B^* A^*=E$
(4). $\boldsymbol{A}^T \boldsymbol{C}^T \boldsymbol{B}^T=\boldsymbol{E}$
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

(a) $\left[(A B)^T\right]^{-1}=\left(A^{-1}\right)^T\left(B^{-1}\right)^T$
(b) $A C$ 可道, 且 $A C=B C$, 则 $A=B$
(c) 3 是 $A$ 的特征值, 则 21 是 $A^3-2 A$ 的特征值
则上述正确的是
$\text{A.}$ (a) $\text{B.}$ (b) $\text{C.}$ (c) $\text{D.}$ 全部

向量组 $\alpha_1=[1,2,-1,1], \alpha_2=[2,0, t, 0], \alpha_3=[-1,2,-4,1]$ 的秩为 2 , 则 $t$ 为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 0

$A, B$ 分别是 $m$ 阶和 $n$ 阶方阵, 则 $\left[\begin{array}{ll}O & A \\ B & O\end{array}\right]$ 的伴随矩阵是
$\text{A.}$ $\left[\begin{array}{cc}O & |B| B^* \\ |A| A^* & O\end{array}\right]$ $\text{B.}$ $(-1)^{m n}\left[\begin{array}{cc}O & |A| B^* \\ |B| A^* & O\end{array}\right]$ $\text{C.}$ $(-1)^{m n}|A||B|\left[\begin{array}{cc}O & B^{-1} \\ A^{-1} & O\end{array}\right]$ $\text{D.}$ $(-1)^{m n}|A||B|\left[\begin{array}{cc}O & B^* \\ A^* & O\end{array}\right]$

已知矩阵$A$和$E-A$可逆,其中$E$为单位矩阵,若矩阵$B$满足$(E-(E-A)^{-1})B=A$,则$B-A=$________.
$\text{A.}$ $\text{B.}$

设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶矩阵,则下列结论错误的是
$\text{A.}$ 若 $\boldsymbol{A} \sim \boldsymbol{B}$, 则 $\boldsymbol{A}^m \sim \boldsymbol{B}^m$ $\text{B.}$ 若 $\boldsymbol{A} \sim \boldsymbol{B}$, 则 $\lambda \boldsymbol{E}-\boldsymbol{A} \sim \lambda \boldsymbol{E}-\boldsymbol{B}$ $\text{C.}$ 若 $\boldsymbol{A} \sim \boldsymbol{B}$ 且 $\boldsymbol{A}, \boldsymbol{B}$ 可逆, 则 $\boldsymbol{A}^{-1}+\boldsymbol{A}^* \sim \boldsymbol{B}^{-1}+\boldsymbol{B}^*$ $\text{D.}$ 若 $\boldsymbol{A} \sim \boldsymbol{B}$, 则 $\boldsymbol{A}+\boldsymbol{A}^{\mathrm{T}} \sim \boldsymbol{B}+\boldsymbol{B}^{\mathrm{T}}$

试卷二维码

分享此二维码到群,让更多朋友参与