考研数学
重点科目
其它科目

科数网

试卷64

数学

单选题 (共 6 题 ),每题只有一个选项正确
关于矩阵的乘法下列描述错误的是
$\text{A.}$ 满足交换律 $\text{B.}$ 不满足消去律 $\text{C.}$ 满足结合律 $\text{D.}$ 满足分配律

设 $A, B$ 都是 $n$ 阶可逆矩阵且满足 $A X B=C$, 则 $X= $
$\text{A.}$ $A^{-1} B^{-1} C$ $\text{B.}$ $A^{-1} C B^{-1}$ $\text{C.}$ $B^{-1} C A^{-1}$ $\text{D.}$ $C A^{-1} B^{-1}$

$n$ 阶方阵 $A$ 可逆的充分必要条件是
$\text{A.}$ 任一行向量都是非零向量 $\text{B.}$ 任一列向量都是非零向量 $\text{C.}$ 线性方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 有解 $\text{D.}$ 当 $\boldsymbol{x} \neq \mathbf{0}$ 时, $\boldsymbol{A} \boldsymbol{x} \neq \mathbf{0}$, 其中 $\boldsymbol{x}=\left(x_1, x_2, \cdots, x_n\right)^T$

设 $\boldsymbol{A}$ 为 3 阶矩阵, 将 $\boldsymbol{A}$ 的第 1,2 两行对调, 再将第 2 列的 2 倍加到第 3 列得 $\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right)$, 则 $\boldsymbol{A}^{\cdot}= $.
$\text{A.}$ $\left(\begin{array}{ccc}3 & 2 & 1 \\ -1 & 0 & 3 \\ -1 & 0 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{ccc}-3 & -2 & -1 \\ 1 & 0 & -3 \\ 1 & 0 & -1\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{ccc}-3 & -2 & -1 \\ -1 & 0 & 3 \\ 1 & 0 & -1\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{ccc}-3 & -2 & 1 \\ 1 & 0 & 3 \\ -1 & 0 & 1\end{array}\right)$

设$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31}+a_{11} & a_{32}+a_{12} & a_{33}+a_{13}
\end{array}\right), \\
\mathbf{P}_1=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{P}_2=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),
\end{gathered}
$$
则必有
$\text{A.}$ $\mathbf{A} \mathbf{P}_1 \mathbf{P}_2=\mathbf{B}$; $\text{B.}$ $\mathbf{A P}_2 \mathbf{P}_1=\mathbf{B}$; $\text{C.}$ $\mathbf{P}_1 \mathbf{P}_2 \mathbf{A}=\mathbf{B}$; $\text{D.}$ $\mathbf{P}_2 \mathbf{P}_1 \mathbf{A}=\mathbf{B}$.

设 $\mathbf{A}$ 是 4 阶矩阵, 且 $\mathbf{A}$ 的行列式 $|\mathbf{A}|=0$, 则 $\mathbf{A}$ 中
$\text{A.}$ 必有一列元素全为 0 ; $\text{B.}$ 必有两列元素成比例; $\text{C.}$ 必有一列向量是其余列向量的线性组合; $\text{D.}$ 任意列向量是其余列向量的线性组合.

试卷二维码

分享此二维码到群,让更多朋友参与