解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设
$$
f(x, y)= \begin{cases}x \sin \frac{1}{y}+y \sin \frac{1}{x}, & x y \neq 0 \\ 0, & x y=0\end{cases}
$$
讨论下列极限:
(1) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} f(x, y)$;
(2) $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)$;
(3) $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.
求极限$\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{\left(x^2+y^2\right) \sin \left(x y^2\right)}{1-\cos \left(x^2+y^2\right)}$
求极限$\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \ln (1+x y)^{\frac{1}{x+y}}$
求极限$\lim _{\substack{x \rightarrow+\infty \\ y \rightarrow+\infty}}\left(\frac{x y}{x^2+y^2}\right)^{x^2} \sin (x y)$
求极限: $\lim _{\substack{x \rightarrow \infty \\ y \rightarrow \infty}} \frac{x+y}{x^2-x y+y^2}$
求极限 $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x y}{\sqrt[3]{x^3+y^3}}+\frac{x^5}{y-x}\right)$
证明题 (共 4 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求证: $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}}\left(x^2+y^2\right) \sin \frac{1}{x^2+y^2}=0$
设二元函数 $f(x, y)$ 在 $G=\left\{(x, y) \mid x^2+y^2 < 1\right\}$ 有定义. 若 $f(x, 0)$ 在点 $x=0$ 处连续, 且 $f_y(x, y)$在 $G$ 上有界, 则 $f(x, y)$ 在点 $(0,0)$ 处连续.
试证: 若函数 $f(x, y)$ 在点 $P\left(x_0, y_0\right)$ 的某邻域 $U(P)$ 内的两个偏导数 $f_x(x, y)$ 与 $f_y(x, y)$ 均有界, 则 $f(x, y)$ 在 $U(P)$ 内连续.
设 $x=\frac{1}{u}+\frac{1}{v}, y=\frac{1}{u^2}+\frac{1}{v^2}, z=\frac{1}{u^3}+\frac{1}{v^3}+ e ^x$, 求 $\frac{\partial z}{\partial y}, \frac{\partial z}{\partial v}$.