解答题 (共 8 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
$\left|\begin{array}{cccc}
a & b & c & d \\
p & q & r & s \\
t & u & v & w \\
l a+m p & l b+m q & l c+m r & l d+m s
\end{array}\right|$
计算$n$阶行列式$\left|\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
& \cdots & \cdots & \cdots & \cdots \cdots \\
b & b & b & \cdots & a
\end{array}\right|$
计算$\left|\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 1 \\
\end{array}\right|$
计算$\left|\begin{array}{cccccc}
2 a & a^2 & 0 & \cdots & 0 & 0 \\
1 & 2 a & a^2 & \cdots & 0 & 0 \\
0 & 1 & 2 a & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots \cdots \cdots \cdots \cdots \cdots & \\
0 & 0 & 0 & \cdots & 2 a & a^2 \\
0 & 0 & 0 & \cdots & 1 & 2 a
\end{array}\right| .$ 其中$n \ge2$
计算$2n$阶行列式 $\left|\begin{array}{cccccc}
a & 0 & 0 & \cdots & 0 & b \\
0 & a & 0 & \cdots & b & 0 \\
0 & 0 & a & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \cdots \cdots & \cdots \cdots & \\
0 & b & 0 & \cdots & a & 0 \\
b & 0 & 0 & \cdots & 0 & a
\end{array}\right|$
计算 $\left|\begin{array}{ccccc}
a_0 & 1 & 1 & \cdots & 1 \\
1 & a_1 & 0 & \cdots & 0 \\
1 & 0 & a_2 & \cdots & 0 \\
\cdots & \cdots & \cdots & \\
1 & 0 & 0 & \cdots & a_n
\end{array}\right| $
$ \left(a_1 a_2 \cdots a_n \neq 0\right)$
计算 $\left|\begin{array}{ccccccc}
1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & 1 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 & 0 \\
& \ldots \ldots & \ldots & \ldots & \ldots & \cdots & \\
0 & 0 & 0 & \cdots & 1 & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 1
\end{array}\right|$
计算$D=\left|\begin{array}{ccccc}
1+a_1 & 1 & 1 & \cdots & 1 \\
1 & 1+a_2 & 1 & \cdots & 1 \\
\cdots \\
1 & 1 & 1 & \cdots & 1+a_n
\end{array}\right|$
证明题 (共 1 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
证明:
$\left|\begin{array}{cccccc}
a+b & a b & 0 & \cdots & 0 & 0 \\
1 & a+b & a b & \cdots & 0 & 0 \\
0 & 1 & a+b & \cdots & 0 & 0 \\
\cdots \\
0 & 0 & 0 & \cdots & 1 & a+b
\end{array}\right|=\frac{a^{n+1}-b^{n+1}}{a-b},$