试卷2

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 5 题 ),每题只有一个选项正确
若反常积分 $\int_0^1 \frac{\ln x}{x^\alpha\left(\tan \frac{\pi}{2} x\right)^\beta} \mathrm{d} x$ 收敛, 则
$\text{A.}$ $-2 < \beta < 0$ 且 $\alpha+\beta \geqslant 1$. $\text{B.}$ $0 < \beta < 2$ 且 $\alpha+\beta < 1$. $\text{C.}$ $\beta < -2$ 且 $\alpha+\beta \geqslant 1$. $\text{D.}$ $\beta>-2$ 且 $\alpha+\beta < 1$.

设 $I_1=\int_0^{\frac{\pi}{4}} \frac{\tan x}{x} \mathrm{~d} x, I_2=\int_0^{\frac{\pi}{4}}\left(\frac{\tan x}{x}\right)^2 \mathrm{~d} x, I_3=\int_0^{\frac{\pi}{4}} \frac{\tan x^2}{x^2} \mathrm{~d} x$, 则有
$\text{A.}$ $I_1>I_2>I_3$ $\text{B.}$ $I_3>I_2>I_1$ $\text{C.}$ $I_2>I_1>I_3$ $\text{D.}$ $I_1>I_3>I_2$

计算积分 $\int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{\tan \theta \sec \theta} \mathrm{e}^{r \cos \theta} r \mathrm{~d} r+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{\frac{1}{\sin \theta}} \mathrm{e}^{r \cos \theta} r \mathrm{~d} r=$.
$\text{A.}$ e $\text{B.}$ ${e}^{-1}$ $\text{C.}$ 0 $\text{D.}$ 1

当 $0 < x \leqslant \frac{\pi}{4}$ 时,下列不等式成立的是
$\text{A.}$ $\int_0^x \mathrm{e}^t \cos t \mathrm{~d} t>x, \int_0^x \mathrm{e}^t(1-\sin t) \mathrm{d} t < x$. $\text{B.}$ $\int_0^x \mathrm{e}^t \cos t \mathrm{~d} t < x, \int_0^x \mathrm{e}^t(1-\sin t) \mathrm{d} t>x$. $\text{C.}$ $\int_0^x \mathrm{e}^t \cos t \mathrm{~d} t>x, \int_0^x \mathrm{e}^t(1-\sin t) \mathrm{d} t>x$. $\text{D.}$ $\int_0^x \mathrm{e}^t \cos t \mathrm{~d} t < x, \int_0^x \mathrm{e}^t(1-\sin t) \mathrm{d} t < x$.

下列反常积分中, 收敛的是
$\text{A.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^2+x}} \mathrm{~d} x$. $\text{B.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^3(x+1)^3}} \mathrm{~d} x$. $\text{C.}$ $\int_0^{+\infty} \frac{1}{\sqrt[3]{x^3+x^2}} \mathrm{~d} x$. $\text{D.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^3+x}} \mathrm{~d} x$.

填空题 (共 1 题 ),请把答案直接填写在答题纸上
已知微分方程 $y^{\prime}-x \sin 2 y=\frac{\ln x}{\sqrt{\left(1+x^2\right)^3}} \cos ^2 y$, 则不定积分 $\int x \tan y \mathrm{~d} x=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。