ks2

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $\alpha_1, \alpha_2, \alpha_3$ 是三维向量空间 $\mathbb{R}^3$ 的基, 则由基 $\alpha_1, \alpha_2, \alpha_3$ 到 基 $\alpha_1+\alpha_2, \alpha_2+\alpha_3, \alpha_3+\alpha_1$ 的过渡矩阵为
$\text{A.}$ $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$ $\text{B.}$ $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ $\text{C.}$ $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ $\text{D.}$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

齐次方程组 $A x=0$ 仅有零解的充要条件是系数矩阵 $A$ 的
$\text{A.}$ 行向量组线性无关; $\text{B.}$ 列向量组线性无关; $\text{C.}$ 行向量组线性相关; $\text{D.}$ 列向量组线性相关.

齐次方程组 $A x=0$ 有非零解的充要条件是
$\text{A.}$ $A$ 的任意两个列向量线性相关; $\text{B.}$ $A$ 的任意两个列向量线性无关; $\text{C.}$ 必有一列向量是其余列向量的线性组合; $\text{D.}$ 任意一列向量都是其余列向量的线性组合.

设 $\boldsymbol{A}$ 为 3 阶非零矩阵, 下列命题中, 是齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 有非零解的充分条件的个数为
(1) 非齐次线性方程组 $\boldsymbol{A}^* \boldsymbol{x}=\boldsymbol{b}$ 有唯一解.
(2) 非齐次线性方程组 $\boldsymbol{A}^* \boldsymbol{x}=\boldsymbol{b}$ 有无穷多解.
(3) 非齐次线性方程组 $\boldsymbol{A A} \boldsymbol{A}^{\top} \boldsymbol{x}=\boldsymbol{b}$ 有唯一解.
(4) 非齐次线性方程组 $\boldsymbol{A A ^ { \top } \boldsymbol { x }}=\boldsymbol{b}$ 有无穷多解.
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

已知 $\boldsymbol{\alpha}_1=(2,1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_2=(1,0,-1)^{\mathrm{T}}$ 是方程组 $\left\{\begin{array}{l}a_1 x_1+a_2 x_2+a_3 x_3=b_1, \\ x_1-2 x_2+x_3=b_2, \\ 2 x_1-x_2-x_3=3\end{array}\right.$ 的两个解, 则该方程组的通解为
$\text{A.}$ $k(1,1,1)^{\mathrm{T}}+(2,1,0)^{\mathrm{T}}$, 其中 $k$ 为任意常数. $\text{B.}$ $k(-1,1,1)^{\mathrm{T}}+(2,1,0)^{\mathrm{T}}$, 其中 $k$ 为任意常数. $\text{C.}$ $k(1,-1,1)^{\mathrm{T}}+(1,0,-1)^{\mathrm{T}}$, 其中 $k$ 为任意常数. $\text{D.}$ $k(1,1,-1)^{\mathrm{T}}+(1,0,-1)^{\mathrm{T}}$, 其中 $k$ 为任意常数.

设矩阵 $\boldsymbol{A}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\right)$, 非齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ 的通解为 $\boldsymbol{x}=k_1\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+k_2\left(\begin{array}{c}-1 \\ 0 \\ 2 \\ 1\end{array}\right)+$ $\left(\begin{array}{l}3 \\ 1 \\ 2 \\ 0\end{array}\right)$, 其中 $k_1, k_2$ 为任意常数, 则下列说法中, 错误的是
$\text{A.}$ $\boldsymbol{b}$ 必可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性表示. $\text{B.}$ $\boldsymbol{b}$ 必可由 $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示. $\text{C.}$ $\boldsymbol{b}$ 必可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性表示. $\text{D.}$ $\boldsymbol{b}$ 必可由 $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性表示.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。