单选题 (共 6 题 ),每题只有一个选项正确
设 $\mathbf{A}$ 是 $n$ 阶对称矩阵, $\mathbf{B}$ 是 $n$ 阶反对称矩阵, 则下列矩阵中, 可用正交变换化为对角矩阵的矩阵 为
$\text{A.}$ BAB ;
$\text{B.}$ ABA ;
$\text{C.}$ $(\mathbf{A B})^2$;
$\text{D.}$ $\mathbf{A B}^2$.
设 $\boldsymbol{A}$ 为 3 阶正交矩阵,且 $\boldsymbol{A}^3=\boldsymbol{E}$. 若 $\boldsymbol{\alpha}, \boldsymbol{\beta}$ 均为非零向量,且 $\boldsymbol{\alpha}, \boldsymbol{A} \boldsymbol{\alpha}$ 线性无关, $\boldsymbol{\alpha}, \boldsymbol{A} \alpha, \boldsymbol{A}^2 \boldsymbol{\alpha}$ 线 性相关, $\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\alpha}=\boldsymbol{\beta}^{\mathrm{\top}} \boldsymbol{A} \boldsymbol{\alpha}=0$, 则
$\text{A.}$ $\boldsymbol{\beta}$ 与 $A \boldsymbol{\beta}, \boldsymbol{A}^2 \boldsymbol{\alpha}$ 均正交.
$\text{B.}$ $\boldsymbol{\beta}$ 与 $A \beta$ 正交,不与 $A^2 \alpha$ 正交.
$\text{C.}$ $A \beta$ 与 $\alpha, A \alpha$ 均正交.
$\text{D.}$ $A \beta$ 与 $\alpha$ 正交, 不与 $A \alpha$ 正交.
设二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+x_2^2+2 x_3^2+2 a x_1 x_3-2 x_2 x_3$. 若二次曲面 $f\left(x_1, x_2, x_3\right)=1$ 上的 点到坐标原点的距离有最大值, 则 $a$ 可能为
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ 2
$\text{D.}$ 3
设二次型 $f\left(x_1, x_2, x_3\right)=5 x_1{ }^2+6 x_2{ }^2+4 x_3{ }^2-4 x_1 x_2-4 x_1 x_3$, 则下列正确的是
$\text{A.}$ $f$ 是正定
$\text{B.}$ $f$ 是负定
$\text{C.}$ $ f$ 即不是正定, 也不是负定
$\text{D.}$ $f$ 的秩等于1
设 $f\left(x_1, x_2, x_3\right)=2 x_1^2+2 x_2^2+2 x_3^2+2 a x_1 x_2$ $+2 a x_1 x_3+2 a x_2 x_3 , a$ 是使二次型 $f\left(x_1, x_2, x_3\right)$ 正定的正整 数,则必有
$\text{A.}$ $a=2$
$\text{B.}$ $a=1$
$\text{C.}$ $a=3$
$\text{D.}$ 以上选项都不对
下列说法中正确的是
$\text{A.}$ 若 3 个 3 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 线性无关
$\text{B.}$ 若 3 个 3 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 则 $\alpha_1, \alpha_2, \alpha_3$ 两两正交
$\text{C.}$ 若 3 个 2 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 中至少一个为 0
$\text{D.}$ 若 3 个 2 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 中只能有一个为 0