单选题 (共 6 题 ),每题只有一个选项正确
二元函数 $f(x, y)$ 在点 $\left(x_{0}, y_{0}\right)$ 处两个偏导数 $f_{x}^{\prime}\left(x_{0}, y_{0}\right), f_{y}^{\prime}\left(x_{0}, y_{0}\right)$ 存在是 $f(x, y)$ 在该点连续的
$\text{A.}$ 充分条件而非必要条件.
$\text{B.}$ 必要条件而非充分条件.
$\text{C.}$ 充分必要条件.
$\text{D.}$ 既非充分条件又非必要条件.
已知 $\frac{(x+a y) \mathrm{d} x+y \mathrm{~d} y}{(x+y)^{2}}$ 为某函数的全微分, 则 $a$ 等于 ( )
$\text{A.}$ $-1$.
$\text{B.}$ 0
$\text{C.}$ 1
$\text{D.}$ 2
设$f(x)$以$2$为周期,当$x∈[-1,1)$时 $f(x)= \begin{cases} -1-x,-1 \le x < 0, \ 2x,0 \le x < \frac {1}{2}, \\ 1-x, \frac {1}{2} \le x < 1, \end{cases}$ 为其傅里叶级数的和函数,则 $S(- \frac {7}{2})=( \quad \quad )$.
$\text{A.}$ 0
$\text{B.}$ $\frac {3}{4} $
$\text{C.}$ $\frac {1}{2} $
$\text{D.}$ 1
设$f(x)$以$2$为周期,当$x∈[-1,1)$时 $f(x)= \begin{cases} -1-x,-1 \le x < 0, \ 2x,0 \le x < \frac {1}{2}, \\ 1-x, \frac {1}{2} \le x < 1, \end{cases}$ 为其傅里叶级数的和函数,则 $S(- \frac {7}{2})=( \quad \quad )$.
$\text{A.}$ 0
$\text{B.}$ $\frac {3}{4} $
$\text{C.}$ $\frac {1}{2} $
$\text{D.}$ 1
设$f(x)$以$2$为周期,当$x∈[-1,1)$时 $f(x)= \begin{cases} -1-x,-1 \le x < 0, \ 2x,0 \le x < \frac {1}{2}, \\ 1-x, \frac {1}{2} \le x < 1, \end{cases}$ 为其傅里叶级数的和函数,则 $S(- \frac {7}{2})=( \quad \quad )$.
$\text{A.}$ 0
$\text{B.}$ $\frac {3}{4} $
$\text{C.}$ $\frac {1}{2} $
$\text{D.}$ 1
设$f(x)$以$2$为周期,当$x∈[-1,1)$时 $f(x)= \begin{cases} -1-x,-1 \le x < 0, \ 2x,0 \le x < \frac {1}{2}, \\ 1-x, \frac {1}{2} \le x < 1, \end{cases}$ 为其傅里叶级数的和函数,则 $S(- \frac {7}{2})=( \quad \quad )$.
$\text{A.}$ 0
$\text{B.}$ $\frac {3}{4} $
$\text{C.}$ $\frac {1}{2} $
$\text{D.}$ 1