单选题 (共 3 题 ),每题只有一个选项正确
某盲盒中有 3 枚硬币, 已知一枚硬币是正面朝上的, 则至少有一枚硬币是反面朝上的概率为
$\text{A.}$ $\frac{6}{7}$
$\text{B.}$ $\frac{2}{3}$
$\text{C.}$ $\frac{4}{7}$
$\text{D.}$ $\frac{1}{3}$
设 $A, B, C$ 是三个随机事件, $0 < P(A) < 1, P(A C)>0$, 则下列说法错误的是
$\text{A.}$ $\mathrm{P}(A B)+\mathrm{P}(A C)+\mathrm{P}(B C) \geqslant \mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(C)-1$
$\text{B.}$ $\mathrm{P}(A B)+\mathrm{P}(A C) \geqslant \mathrm{P}(A)+\mathrm{P}(B C)-1$
$\text{C.}$ $\mathrm{P}(B \mid A)>\mathrm{P}(B \mid A C)$
$\text{D.}$ $\mathrm{P}(B \mid A)+\mathrm{P}(B \mid \bar{A}) \geqslant \mathrm{P}(B)$
将一颗骰子独立地捛两次, 引进事件: $A=\{$ 掷第一次出现的点数为 1$\}, B=\{$ 掊第二次虫现的点数为 2$\}, C=\{$ 两次点数之和为 8$\}, D=\{$ 两次点数之和为 7$\}$,则事件
$\text{A.}$ $A$ 与 $C$ 相互独立.
$\text{B.}$ $A$ 与 $D$ 相互独立.
$\text{C.}$ $C$ 与 $D$ 相互独立.
$\text{D.}$ $B$ 与 $C$ 相互独立.
填空题 (共 3 题 ),请把答案直接填写在答题纸上
1. 设 $A 、 B 、 C$ 表示 3 个随机事件, 试将下列事件用 $A 、 B 、 C$ 表示出来:
(1) $A 、 C$ 出现, $B$ 不出现;
(2) 恰好有 2 个事件出现;
(3) 3 个事件中至少有 2 个出现;
(4) 3 个事件中不多于 1 个出现.
在某系中任选一个学生, 令事件 $A$ 表示被选学生是男生, 事件 $B$ 表示该学生是三年级学生, 事件 $C$ 表示该学生是优秀生. 试用 $A 、 B 、 C$ 表示下列事件:
(1) 选到三年级的优秀男生;
(2)选到非三年级的优秀女生;
(3) 选到的男生但不是优秀生;
(4)选到三年级男生或优秀女生.
写出 $n$ 个人组成的班级的一次某学科测验的平均成绩的样本空间。