试卷75

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设二维随机变量 $(X, Y) \sim N(0,0 ; 1,1 ; 0), U=a X+b Y, V=c X+d Y$, 其中 $a, b, c, d$ 为实 数, 则 $(U, V) \sim N(0,0 ; 1,1 ; 0)$ 是 $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ 为正交矩阵的
$\text{A.}$ 充分必要条件 $\text{B.}$ 充分非必要条件 $\text{C.}$ 必要非充分条件 $\text{D.}$ 非充分非必要条件

设 $X, Y$ 是两个随机变量, $E(X)=2, E(Y)=-1, D(X)=9, D(Y)=16$, 且 $X, Y$ 的相关系数 为 $\rho=-\frac{1}{2}$, 已知由切比雪夫不等式可得 $P\{|X+Y-1| < 10\} \geqslant k$, 则 $k$ 的值等于
$\text{A.}$ $\frac{9}{16}$. $\text{B.}$ $\frac{3}{4}$. $\text{C.}$ $\frac{21}{25}$. $\text{D.}$ $\frac{87}{100}$.

设 $\theta$ 为总体 $X$ 的末知参数, $\theta_1, \theta_2$ 为统计量, $\left(\theta_1, \theta_2\right)$ 为 $\theta$ 的置信度 是 $1-\alpha(0 < \alpha < 1)$ 的置信区间, 则有
$\text{A.}$ $p\left(\theta_1 < \theta < \theta_2\right)=\alpha$ $\text{B.}$ $p\left(\theta_1 < \theta < \theta_2\right)=1-\alpha$ $\text{C.}$ $p\left(\theta < \theta_2\right)=\alpha$ $\text{D.}$ $p\left(\theta_1 < \theta\right)=1-\alpha$

设 $X \sim N\left(2, \sigma^2\right)$. 且 $p(2 < X < 4)=0.3$, 则 $p(X < 0)=$
$\text{A.}$ 0.1 $\text{B.}$ 0.2 $\text{C.}$ 0.3 $\text{D.}$ 0.4

设随机变量 $X_1$ 和 $X_2$ 相互独立, 且均服从参数为 $\lambda$ 的指数分布, 则下列随机 变量中服从参数为 $2 \lambda$ 的指数分布的是
$\text{A.}$ $\max \left(X_1, X_2\right)$ $\text{B.}$ $\min \left(X_1, X_2\right)$ $\text{C.}$ $X_1+X_2$ $\text{D.}$ $X_1-X_2$

设两个相互独立的随机变量 $X$ 和 $Y$ 分别服从正态分布 $N(0,1)$ 和 $N(1,1)$, 则
$\text{A.}$ $P\{X+Y \leq 0\}=\frac{1}{2}$ $\text{B.}$ $P\{X+Y \leq 1\}=\frac{1}{2}$ $\text{C.}$ $P\{X-Y \leq 0\}=\frac{1}{2}$ $\text{D.}$ $P\{X-Y \leq 1\}=\frac{1}{2}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。