单选题 (共 6 题 ),每题只有一个选项正确
设非齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1$ 有解, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_2$ 无解, 对于任意常数 $k$
$\text{A.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定有解
$\text{B.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定无解
$\text{C.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定有解
$\text{D.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定无解
设 $A, B$ 为满足 $A B=0$ 的任意两个非零矩阵,则必有
$\text{A.}$ $A$ 的列向量组线性相关, $B$ 的行向量组线性相关
$\text{B.}$ $A$ 的列向量组线性相关, $B$ 的列向量组线性相关
$\text{C.}$ $A$ 的行向量组线性相关, $B$ 的行向量组线性相关
$\text{D.}$ $A$ 的行向量组线性相关, $B$ 的列向量组线性相关
设矩阵 $A=\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, 则矩阵 $A, B$
$\text{A.}$ 合同且相似
$\text{B.}$ 合同但不相似
$\text{C.}$ 不合同但相似
$\text{D.}$ 既不合同也不相似
设非齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1$ 有解, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_2$ 无解, 对于任意常数 $k$, 必有
$\text{A.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定有解
$\text{B.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定无解
$\text{C.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定有解
$\text{D.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定无解
设 $m, n$ 均为正整数, 并且 $m < n$, 设 $\boldsymbol{A}$ 为 $m \times m$ 的矩阵, $\boldsymbol{B}$ 为 $m \times n$ 的矩阵, $\boldsymbol{C}$ 为 $n \times m$ 的矩阵, 已知 $\boldsymbol{A B C}=\boldsymbol{E}$, 设 $\boldsymbol{A}^*$ 为 $\boldsymbol{A}$ 的伴随矩阵, 则下列说法正确的个数有 ( ) 个
①$B C A=E$
②$C A B=E$
③$C^* B^* A^*=E$
④${A}^T {C}^T {B}^T={E}$
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
下列说法中正确的是
$\text{A.}$ 若 3 个 3 维列向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 两两正交, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关
$\text{B.}$ 若 3 个 3 维列向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 两两正交
$\text{C.}$ 若 3 个 2 维列向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 两两正交, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 中至少一个为 0
$\text{D.}$ 若 3 个 2 维列向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 两两正交, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 中只能有一个为 $\mathbf{0}$