单选题 (共 6 题 ),每题只有一个选项正确
若 $\lim _{x \rightarrow 0} \frac{a x^2+b x+1-e^{x^2-2 x}}{x^2} =2$, 则
$\text{A.}$ $a={5}, b=-2$.
$\text{B.}$ $a=-2, b=5 $
$\text{C.}$ $a={2}, b=0$.
$\text{D.}$ $a={4}, b=-4$.
函数 $f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$ 的可去间断点的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设对于任意 $\alpha \in\left(0, \frac{\pi}{2}\right)$, 方程 $x^{\cos ^2 \alpha}=k+x \cos ^2 \alpha(x>0)$ 有两个不同的实根, 则 $k$ 的取值范围 是
$\text{A.}$ $\left[0, \sin ^2 \alpha\right)$.
$\text{B.}$ $\left(0, \sin ^2 \alpha\right)$.
$\text{C.}$ $\left[0, \cos ^2 \alpha\right)$.
$\text{D.}$ $\left(0, \cos ^2 \alpha\right)$.
函数 $f(x)=\left\{\begin{array}{ll}1+x^2 & x \leq 0 \\ x-2 & x>0\end{array}\right.$ 是
$\text{A.}$ 在 $(-\infty,+\infty)$ 单调增加函数
$\text{B.}$ 在 $(-\infty,+\infty)$ 单调减少函数
$\text{C.}$ 在 $(-\infty, 0)$ 单增 $(0,+\infty)$ 单减函数
$\text{D.}$ 在 $(-\infty, 0)$ 单减 $(0,+\infty)$ 单增函数
如果一个二元函数 $f(x, y)$ 可以写为一个关于 $x$ 的函数 $g(x)$ 乘以一个关于 $y$ 的函数 $h(y)$, 也就是 $f(x, y)=g(x) h(y)$ 的形式, 我们把符合这样的情况的函数叫做 “二元函数 $f(x, y)$ 关于变量 $x, y$ 可分离”, 假定下列的函数中 $f(x, y)$ 具有二阶连续偏导数, 则下列说法中不正确的是 ( )
(1). 若 $f(x, y)=x y \mathrm{e}^{x+y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(2). 若 $f(x, y)=(x+y) \mathrm{e}^{x y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(3). 若 $f(x, y)>0$ 并且 $\frac{\partial^2(\ln f(x, y))}{\partial x \partial y}=0$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(4.) 若 $f(x, y)>0$ 并且满足 $\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y}=\frac{\partial^2 f}{\partial x \partial y} \cdot f(x, y)$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
$\text{A.}$ (2)
$\text{B.}$ (1)(3)(4)
$\text{C.}$ (2)(4)
$\text{D.}$ (1)(3)
下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。
$\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。
$\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$
$\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在