中值定理与函数凸凹性填空题(28)

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


填空题 (共 6 题 ),请把答案直接填写在答题纸上
由方程 $y=\cos (x y)-x$ 所确定的隐函数为 $y=f(x)$, 求导数 $f^{\prime}(x)$.

设 $a>0, f(x)$ 在 $[0,2 a]$ 上连续, 且 $f(0)=f(2 a)$, 试证: 存在 $\xi \in[0, a]$, 使 $f(\xi)=f(\xi+a)$.

$\lim _{t \rightarrow 0^{+}} \frac{1}{t^3} \int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{\frac{t}{\cos \theta}} \frac{\sin \left(r^2 \sin \theta \cos \theta\right)}{\sin \theta} \mathrm{d} r=$

曲线 $\left\{\begin{array}{l}x=\arctan t \\ y=\ln \sqrt{1+t^2}\end{array}\right.$ 对应于 $t=1$ 处的法线方程为

曲线 $y=x \sin x+2 \cos x\left(-\frac{\pi}{2} < x < 2 \pi\right)$ 的拐点是

设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$, 则 $\lim _{n \rightarrow \infty} n a_n=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。