连续性与间断点填空题(35)

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


填空题 (共 6 题 ),请把答案直接填写在答题纸上
$\lim _{x \rightarrow 0}\left[\frac{1}{e^x-1}-\frac{1}{\ln (1+x)}\right]=$

设 $\left\{\begin{array}{c}x=\sqrt{t^2+1} \\ y=\ln \left(t+\sqrt{t^2+1}\right)\end{array}\right.$, 则 $\left.\frac{d^2 y}{d x^2}\right|_{t=1}=$

已知 $f^{\prime}(1)=8$, 则 $\lim _{x \rightarrow 0} \frac{f\left(1-x^2\right)-f(1)}{1-\cos x}=$

设 $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x}) & \mathrm{x} \geq 0 \\ \operatorname{b \arctan} \frac{1}{\mathrm{x}} & \mathrm{x} < 0\end{array}\right.$ 是连续函数, 则 $\mathrm{b}=$

设函数 $\mathrm{f}(\mathrm{x})$ 在 $(-\infty,+\infty)$ 上连续,求 $\frac{d}{d x} \int_0^x t f\left(t^2-x^2\right) d t $

已知函数 $f(x)=\left\{\begin{array}{lc}(1-x)^{\frac{1}{x}}, & x \neq 0 \\ a, & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则 $a=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。