期末高数上册模拟卷

数学

本试卷总分100分,考试时间90分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
$f(x)$ 当 $x \rightarrow x_0$ 时的右极限 $f\left(x_0^{+}\right)$和左极限 $f\left(x_0^{-}\right)$存在且相等是 $\lim _{x \rightarrow x_0} f(x)$ 存在的 $\qquad$条件
$\text{A.}$ 必要 $\text{B.}$ 充分 $\text{C.}$ 充要 $\text{D.}$ 充分不必要

$f(x)=\frac{x \ln |x|}{|x-1|} \mathrm{e}^{\frac{1}{(x-1)(x-2)}}$ 的无穷间断点的个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设 $f(x)=\left\{\begin{array}{ll}\left\lvert\, \frac{x^2-1 \mid}{x-1}\right., & x \neq 1 \\ 2, & x=1\end{array}\right.$, 则在点 $x=1$ 处函数 $f(x)$
$\text{A.}$ 不连续 $\text{B.}$ 连续,但不可导 $\text{C.}$ 可导,但导数不连续 $\text{D.}$ 可导,且导数连续

已知当 $x \rightarrow 0$ 时, $\left(\mathrm{e}^{\sin ^2 x}-1\right) \ln \left(1+\sin ^2 x\right)$ 是比 $x \sin ^n x$ 高阶的无穷小量, 而 $x \tan x^n$ 是比 $\sqrt{1+\tan x^2}-1$ 高阶的无穷小量, 则正整数 $n=$
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

设 $f(x), g(x)$ 是恒大于零的可导函数,且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$ ,则当 $a < x < b$ 时,有
$\text{A.}$ $f(x) g(b)>f(b) g(x)$ $\text{B.}$ $f(x) g(a)>f(a) g(x)$ $\text{C.}$ $f(x) g(x)>f(b) g(b)$ $\text{D.}$ $f(x) g(x)>f(a) g(a)$

极限 $\lim _{x \rightarrow \infty}\left[\frac{x^2}{(x-a)(x+b)}\right]^x$
$\text{A.}$ 1 $\text{B.}$ $e$ $\text{C.}$ $e^{a-b}$ $\text{D.}$ $e^{b-a}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。