测试3

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 5 题 ),每题只有一个选项正确
曲线 $y=\frac{1}{x}+\ln \left(1+ e ^x\right)$ 渐近线的条数为
$\text{A.}$ 0 . $\text{B.}$ 1 . $\text{C.}$ 2 . $\text{D.}$ 3 .

当 $x>0$ 时, 曲线 $y=x \sin \frac{1}{x}$
$\text{A.}$ 有且仅有水平渐近线. $\text{B.}$ 有且仅有铅直渐近线. $\text{C.}$ 既有水平渐近线, 也有铅直渐近线. $\text{D.}$ 既无水平渐近线, 也无铅直渐近线.

已知 $y=\ln (1-x)$, 则 $\frac{d^n y}{d x^n}=(\quad)$.
$\text{A.}$ $(-1)^{n-1} \frac{(n-1)!}{(1-x)^n}$ $\text{B.}$ $-\frac{(n-1)!}{(1-x)^n}$ $\text{C.}$ $(-1)^{n-1} \frac{1}{(1-x)^n}$ $\text{D.}$ $-\frac{1}{(1-x)^n}$

设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则下列顺序正确的是 ( ).
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$ $\text{B.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$ $\text{C.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$ $\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$

函数 $f(x)=x e^x$ 的带有皮亚诺型余项的 $n$ 阶麦克劳林公式为 ( ).
$\text{A.}$ $x e^x=x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o\left(x^n\right)$ $\text{B.}$ $x e^x=x+x^2+\frac{x^3}{2!}+\cdots+\frac{x^n}{(n-1)!}+o\left(x^n\right)$ $\text{C.}$ $x e^x=x+\frac{x^2}{2}+\cdots+\frac{x^n}{n}+o\left(x^n\right)$ $\text{D.}$ $x e^x=x+x^2+\frac{x^3}{2}+\cdots+\frac{x^n}{n-1}+o\left(x^n\right)$

填空题 (共 1 题 ),请把答案直接填写在答题纸上
$y=\frac{\arcsin x+\arccos x}{e^x}(-1 \leq x \leq 1)$, 求 $y^{(n)}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。