03 第二重要极限

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 2 题 ),每题只有一个选项正确
若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0 $\text{B.}$ 6 $\text{C.}$ 36 $\text{D.}$ $\infty$

当 $x \rightarrow \infty$ 时, $\left(1-\frac{1}{x}\right)^x$ 的极限为 ( )。
$\text{A.}$ $e$ $\text{B.}$ $\frac{1}{e}$ $\text{C.}$ 1 $\text{D.}$ 不存在

填空题 (共 2 题 ),请把答案直接填写在答题纸上
$\lim _{x \rightarrow 0}(1+3 x)^{\frac{2}{\sin x}}=$

设 $\lim _{x \rightarrow 0} \dfrac{\ln \left(1+\frac{f(x)}{\sin 2 x}\right)}{e^x-1}=3$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{n \rightarrow \infty}\left(\sin \frac{1}{x}+\cos \frac{1}{x}\right)^x$解

求极限 $\lim _{x \rightarrow+\infty}\left[\sqrt{4 x^2+x} \ln \left(2+\frac{1}{x}\right)-2 x \ln 2\right]$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。