后保研概率论与统计一维随机变量与分布试卷

数学

本试卷总分100分,考试时间90分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 8 题 ),每题只有一个选项正确
设总体 $X$ 服从参数为 $\lambda$ 的泊松分布, 简单样本 $X_1, X_2, \cdots, X_n$ 来自该总体, $\bar{X}, S^2$ 分别是样本均值和样本方差,则以下不能作为未知参数 $\lambda$ 的矩估计量的是
$\text{A.}$ $\bar{X}$ $\text{B.}$ $S^2$ $\text{C.}$ $S$ $\text{D.}$ $\frac{-1+\sqrt{1+\frac{4}{n} \sum_{i=1}^n X_i^2}}{2}$

设简单样本 $X_1, \cdots, X_n$ 来自标准正态分布, $\bar{X}, S^2$ 分别是样本均值和样本方差, 则以下选项正确的是()。
$\text{A.}$ $\bar{X} \sim N(0,1)$ $\text{B.}$ $\bar{X}^2$ 服从卡方分布 $\text{C.}$ $S^2$ 服从卡方分布 $\text{D.}$ $\frac{n \bar{X}^2}{S^2}$ 服从 $F$ 分布

设 $f(x)$ 是连续型随机变量 $X$ 的概率密度, $F(x)$ 为其分布函数, 则

$\text{A.}$ $0 \leqslant f(x) \leqslant 1$ $\text{B.}$ $P\{X=x\} \leqslant F(x)$ $\text{C.}$ $P\{X=x\}=F^{\prime}(x)$ $\text{D.}$ $P\{X=x\}=f(x)$

设 $F(x)$ 是随机变量 $X$ 的分布函数, 则下列函数中一定不是分布函数的是( ).
$\text{A.}$ $F^2(x)$ $\text{B.}$ $F^3(x)$ $\text{C.}$ $F(2 x)$ $\text{D.}$ $2 F(x)$

下列函数中, 可以作为连续型随机变量概率密度的是 ( ).
$\text{A.}$ $f_1(x)= \begin{cases}\sin x, & 0 \leqslant x < \frac{\pi}{2}, \\ 0, & \text { 其他 }\end{cases}$ $\text{B.}$ $f_2(x)= \begin{cases}\sin x, & -\frac{\pi}{2} \leqslant x < 0, \\ 0, & \text { 其他 }\end{cases}$ $\text{C.}$ $f_3(x)= \begin{cases}\sin x, & 0 \leqslant x < \pi, \\ 0, & \text { 其他 }\end{cases}$ $\text{D.}$ $f_4(x)= \begin{cases}1-\sin x, & 0 \leqslant x < \frac{\pi}{2}, \\ 0, & \text { 其他 }\end{cases}$

设随机变量 $X$ 的分布函数 $F(x)= \begin{cases}0, & x < 0, \\ \frac{1}{2}, & 0 \leqslant x < 1 \text {, 则 } P\{X=1\}=(\quad) . \\ 1- e ^{-x}, & x \geqslant 1,\end{cases}$
$\text{A.}$ 0 $\text{B.}$ $\frac{1}{2}$ $\text{C.}$ $\frac{1}{2}- e ^{-1}$ $\text{D.}$ $1- e ^{-1}$

已知离散型随机变量 $X$ 的分布律为 $P\{X=k\}=p^{k+1}(k=0,1)$, 则 $p=(\quad)$.
$\text{A.}$ $\frac{\sqrt{5}-1}{2}$ $\text{B.}$ $\frac{\sqrt{5}+1}{4}$ $\text{C.}$ $\frac{1-\sqrt{5}}{2}$ $\text{D.}$ $\frac{-1-\sqrt{5}}{2}$

设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 $[-1,3]$ 上均匀分布的概率密度, 若

$$
f(x)=\left\{\begin{array}{ll}
a f_1(x), & x \leqslant 0, \\
b f_2(x), & x>0
\end{array},(a>0, b>0)\right.
$$

为概率密度, 则 $a, b$ 应满足
$\text{A.}$ $2 a+3 b=4$ $\text{B.}$ $3 a+2 b=4$ $\text{C.}$ $a+b=1$ $\text{D.}$ $a+b=2$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。