一、填空题 (共 10 题 ),请把答案直接填写在答题纸上
2.
3. 记 ,则
4. 设 ,则
7. 常微分方程 的通解为
8. 设 ,广义积分 收敛,则实数 的取值范围是。
9. 由曲线段 绕 轴旋转一周所成旋转面的面积为。
10. 设连续函数 满足 ,则
二、解答题 (共 5 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
11. 求积分 的值。
12. 求常微分方程 的通解。
13. 求函数 的单调区间,极值,上凸区间与下凸区间,以及拐点的横坐标。
14. 设 为 与 轴围成的有界区域。
(I)求 的面积;
(II)求 绕 轴旋转一周所成旋转体体积
15. 设平面曲线 满足 ,且对曲线上任意点 ( ,沿曲线从点 到点 的弧长等于该曲线在点 的切线斜率,求 ( )
三、证明题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
16. 设 是 上以 为周期的周期函数,且连续,证明:
(I)函数 是以 为周期的周期函数;
(II) 。
17. 设可导函数 满足 ,且对 时,有 。
( I )证明: 存在且有限;
(II)证明: 。
附加题(本题为附加题,全对才给分,其分数不计入总评,仅用于评判 )
设 为非负的周期函数,周期为 1 ,且 ,求证: