单选题 (共 5 题 ),每题只有一个选项正确
设二元函数 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处有定义,则下列说法中,正确的是 $(\quad)$
$\text{A.}$ 若 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在,则 $\lim _{(x, y) \rightarrow\left(x_0, y_0\right)} f(x, y)$ 存在.
$\text{B.}$ 若 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在,则 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在.
$\text{C.}$ 若 $\lim _{(x, y) \rightarrow\left(x_0, y_0\right)} f(x, y)$ 存在,则 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在.
$\text{D.}$ 若 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在,则 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在.
设 $f_1(x, y)=\left\{\begin{array}{ll}\frac{y^2-x y}{\sqrt{x}-\sqrt{y}}, & x \neq y, \\ 0, & x=y,\end{array} f_2(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.\right.$ 则
$\text{A.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均连续.
$\text{B.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均不连续.
$\text{C.}$ $f_1(x, y)$ 在点 $(0,0)$ 处连续,$f_2(x, y)$ 在点 $(0,0)$ 处不连续.
$\text{D.}$ $f_1(x, y)$ 在点 $(0,0)$ 处不连续,$f_2(x, y)$ 在点 $(0,0)$ 处连续.
设有三元方程 $x \arctan x+\frac{\ln x}{\ln y}+z e ^{\sin z}=\frac{\pi}{4}$ ,根据隐函数存在定理,存在点 $(1, e , 0)$ 的一个邻域,在此邻域内该方程( )
$\text{A.}$ 只能确定一个具有连续偏导数的隐函数 $z=z(x, y)$ .
$\text{B.}$ 可确定两个具有连续偏导数的隐函数 $y=y(x, z)$ 和 $z=z(x, y)$ .
$\text{C.}$ 可确定两个具有连续偏导数的隐函数 $x=x(y, z)$ 和 $z=z(x, y)$ .
$\text{D.}$ 可确定两个具有连续偏导数的隐函数 $x=x(y, z)$ 和 $y=y(x, z)$ .
设函数 $f(x)$ 具有二阶连续导数,且 $f(x)>0, f^{\prime}(0)=0$ ,则函数 $z(x, y)=f(x)^{f(y)}$ 在点 $(0,0)$ 处取得极小值的一个充分条件是( )
.
$\text{A.}$ $f(0) < 1, f^{\prime \prime}(0) < 0$ .
$\text{B.}$ $f(0)>1, f^{\prime \prime}(0) < 0$ .
$\text{C.}$ $ f(0) < 1, f^{\prime \prime}(0)>0$
$\text{D.}$ $f(0)>1, f^{\prime \prime}(0)>0$ .
设正值函数 $f(x, y, z)$ 与 $g(x, y, z)$ 在点 $(0,0,0)$ 处的各个偏导数均存在且连续,$f(0,0,0)=$ $g(0,0,0)=1, f(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $n$ 的方向导数 $\left.\frac{\partial f}{\partial n }\right|_{(0,0,0)}=1, g(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $n$ 的方向导数 $\left.\frac{\partial g}{\partial n }\right|_{(0,0,0)}=2$ ,则 $\left.\frac{\partial\left(\frac{1}{f}+\frac{1}{g}\right)}{\partial n }\right|_{(0,0,0)}=$
$\text{A.}$ 1 .
$\text{B.}$ 3 .
$\text{C.}$ -1 .
$\text{D.}$ -3 .
填空题 (共 3 题 ),请把答案直接填写在答题纸上
设函数 $F(x, y)=\int_0^{x+y} \frac{\cos t}{1+t} d t$ ,则 $\left.\frac{\partial^2 F}{\partial x^2}\right|_{\substack{x=-1 \\ y=1}}=$
设曲面方程为 $z=w(x) e ^{\sin (x y)}$ ,其中 $w=w(x)(w>0)$ 由方程 $x^2+w^2+ e ^{x w}=5$ 确定,则曲面在点 $(0,1, z(0,1))$ 处的切平面方程为
设函数 $f(x, y)$ 具有一阶连续偏导数,且 $d [f(x, y)]=[\cos (x-y)-\sin (x-y)] e ^{y-x}(d x$ $- d y), f(0,0)=0$ ,则 $f(x, y)=$
解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设函数 $f(u, v)$ 具有二阶连续偏导数,函数 $g(x, y)=x^2+y^2-f(x+y, x y)$ .求 $\frac{\partial^2 g}{\partial x^2}-2 \frac{\partial^2 g}{\partial x \partial y}$ $+\frac{\partial^2 g}{\partial y^2}$ .
求函数 $f(x, y)=\left(3 x^3-y\right) e ^{x-y}$ 的极值.