考研数学
重点科目
其它科目

科数网

试卷11

数学

单选题 (共 5 题 ),每题只有一个选项正确
累次积分 $\int_0^{\frac{\pi}{4}} d \theta \int_0^{2 \cos \theta} f(\rho \cos \theta, \rho \sin \theta) \rho d \rho$ 等于
$\text{A.}$ $\int_0^1 d y \int_y^{1-\sqrt{1-y^2}} f(x, y) d x$ $\text{B.}$ $\int_0^2 d x \int_0^{\sqrt{2 x-x^2}} f(x, y) d y$ $\text{C.}$ $\int_0^2 d \rho \int_0^{\frac{\pi}{4}} f(\rho \cos \theta, \rho \sin \theta) d \theta$ $\text{D.}$ $\int_0^{\sqrt{2}} d \rho \int_0^{\frac{\pi}{4}} f(\rho \cos \theta, \rho \sin \theta) \rho d \theta+\int_{\sqrt{2}}^2 d \rho \int_0^{\arccos \frac{\rho}{2}} f(\rho \cos \theta, \rho \sin \theta) \rho d \theta$

设 $D$ 是以 $A(1,1), B(-1,1), C(-1,-1)$ 为三顶点的三角形, 则 $I=$ $\iint_D\left[\sin (x y) \sqrt{x^2+3 y^2+1}+3 x+3 y\right] \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ 4 $\text{B.}$ 3 $\text{C.}$ 2 $\text{D.}$ 0

设 $I_1=\iint_D \sin \left|\frac{x-y}{2}\right| \mathrm{d} x \mathrm{~d} y, I_2=\iint_D \sin \left(\frac{x-y}{2}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D \sin \left(\frac{x-y}{2}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其中 $D=$ $\left\{(x, y) \mid(x-1)^2+(y-1)^2 \leqslant 2\right\}$, 则
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_2 < I_3 < I_1$ $\text{C.}$ $I_3 < I_1 < I_2$ $\text{D.}$ $I_3 < I_2 < I_1$

设平面区域 $D$ 是由 $y=x, x=1$ 及 $x$ 轴所围成,二重积分 $\iint_D \frac{1}{\sqrt{x^2+y^2}} d \sigma$ 转换成平面极坐标系下的二次积分,可表示为?
$\text{A.}$ $\int_0^{\frac{\pi}{2}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$ $\text{B.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$ $\text{C.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$ $\text{D.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$

函数 $f(x, y)$ 连续,交换二重积分 $\int_0^1 d y \int_y^{\sqrt{y}} f(x, y) d x$ 次序,该二重积分可表示为?
$\text{A.}$ $\int_0^1 d x \int_{x^3}^x f(x, y) d y$ $\text{B.}$ $\int_0^1 d x \int_{x^4}^x f(x, y) d y$ $\text{C.}$ $\int_0^1 d x \int_{x^2}^x f(x, y) d y$ $\text{D.}$ $\int_0^1 d x \int_{x^5}^x f(x, y) d y$

填空题 (共 1 题 ),请把答案直接填写在答题纸上
$\int_0^\pi d \theta \int_0^{\frac{1}{\cos \theta}} \rho^2 d \rho+\int_1^{\sqrt{2}} d x \int_0^{\sqrt{2-x^2}} \sqrt{x^2+y^2} d y=$

试卷二维码

分享此二维码到群,让更多朋友参与