高等数学25

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
假设存在常数 $C$ 使得对任意非负整数 $n$ 都有 $\left|f^{(n)}(x)\right| \leq C^n$ 。证明,对任意 $x_0 \in \mathbb{R} , f(x)$ 有无穷 Taylor 级数
$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_0\right)}{k !}\left(x-x_0\right)^k, \quad \forall x \in \mathbb{R} .
$$

证明实轴 $\mathbb{R}$ 不能分解为可数个长度大于零的不交闭区间的并。

假设定义在区间 $(a, b)$ 上的函数 $f$ 的左右导数处处存在,证明 $f$ 至多在可数个点处不可导。

考虑无穷级数
$$
\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}, \quad x \in[-\pi, \pi]
$$
1)证明级数在 $x=0, \pm \pi$ 处绝对收敛,在 $(-\pi, 0) \cup(0, \pi)$ 上条件收敛;
2) 记极限函数为 $S(x)$ ,证明 $S(x)$ 是 $[-\pi, 0) \cup(0, \pi]$ 上的连续函数;
3) 证明函数 $S(x)$ 在 0 处不连续。

已知曲线 $y=f(x)$ 和 $\int_a^{y+x} \mathrm{e}^{-t^2} \mathrm{~d} t=2 y-\sin x$ 在原点处相切, 试求极限 $\lim _{x \rightarrow 0}\left(\frac{\ln (1+x)}{x^{1+a}}\right)^{\frac{1}{f(x)}}$.

设抛物线 $y=a x^2+b x+c$ 通过点 $(0,0)$ 和 $(1,2)$, 且 $a < 0$, 试确定 $a, b, c$ 的值使该拖物线与 $x$轴所围图形 $D$ 的面积最小,并求此图形 $D$ 绕直线 $x=2$ 旋转一周所得旋转体的体积.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。