试卷04

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)=\int_x^{x^2}\left(1+\frac{1}{t}\right)^t \cdot \frac{1}{\sqrt{t}} \mathrm{~d} t, x>1$, 则当 $n \rightarrow \infty$ 时, $\frac{1}{f(n)}$ 是 $\frac{1}{n}$ 的
$\text{A.}$ 等价无穷小量. $\text{B.}$ 同阶非等价无穷小量. $\text{C.}$ 高阶无穷小量. $\text{D.}$ 低阶无穷小量.

设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续, $\int_0^1 f(x) \mathrm{d} x=4$, 则 $\int_0^1\left[f(x) \int_x^1 f(t) \mathrm{d} t\right] \mathrm{d} x=$
$\text{A.}$ 2 $\text{B.}$ 4 $\text{C.}$ 8 $\text{D.}$ 16

$x \rightarrow 0$ 时, 若 $\mathrm{e}^x-\frac{1+a x}{1+b x+c x^2}$ 是比 $x^3$ 高阶的无穷小量, 则
$\text{A.}$ $a=\frac{1}{3}, b=-\frac{2}{3}, c=\frac{1}{6}$. $\text{B.}$ $a=\frac{1}{3}, b=-\frac{2}{3}, c=-\frac{1}{6}$. $\text{C.}$ $a=\frac{2}{3}, b=-\frac{1}{3}, c=-\frac{1}{6}$. $\text{D.}$ $a=\frac{4}{3}, b=\frac{1}{3}, c=\frac{1}{6}$.

设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$

设 $X_1, X_2 \ldots \ldots X_n(n \geq 2)$ 来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$ ,则下列结论中不正确的是(
$\text{A.}$ $\sum_{i=1}^n\left(X_i-\mu\right)^2$ 服从 $\chi^2$ 分布 $\text{B.}$ $2\left(X_n-X_1\right)^2$ 服从 $\chi^2$ 分布 $\text{C.}$ $\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 服从 $\chi^2$ 分布 $\text{D.}$ $n(\bar{X}-\mu)^2$ 服从 $\chi^2$ 分布

设 $X_1, X_2 \ldots \ldots X_n(n \geq 2)$ 来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$ ,则下列结论中不正确的是
$\text{A.}$ $\sum_{i=1}^n\left(X_i-\mu\right)^2$ 服从 $\chi^2$ 分布 $\text{B.}$ $2\left(X_n-X_1\right)^2$ 服从 $\chi^2$ 分布 $\text{C.}$ $\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 服从 $\chi^2$ 分布 $\text{D.}$ $n(\bar{X}-\mu)^2$ 服从 $\chi^2$ 分布

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。