单选题 (共 6 题 ),每题只有一个选项正确
设 $f(x)=\int_x^{x^2}\left(1+\frac{1}{t}\right)^t \cdot \frac{1}{\sqrt{t}} \mathrm{~d} t, x>1$, 则当 $n \rightarrow \infty$ 时, $\frac{1}{f(n)}$ 是 $\frac{1}{n}$ 的
$\text{A.}$ 等价无穷小量.
$\text{B.}$ 同阶非等价无穷小量.
$\text{C.}$ 高阶无穷小量.
$\text{D.}$ 低阶无穷小量.
设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续, $\int_0^1 f(x) \mathrm{d} x=4$, 则 $\int_0^1\left[f(x) \int_x^1 f(t) \mathrm{d} t\right] \mathrm{d} x=$
$\text{A.}$ 2
$\text{B.}$ 4
$\text{C.}$ 8
$\text{D.}$ 16
$x \rightarrow 0$ 时, 若 $\mathrm{e}^x-\frac{1+a x}{1+b x+c x^2}$ 是比 $x^3$ 高阶的无穷小量, 则
$\text{A.}$ $a=\frac{1}{3}, b=-\frac{2}{3}, c=\frac{1}{6}$.
$\text{B.}$ $a=\frac{1}{3}, b=-\frac{2}{3}, c=-\frac{1}{6}$.
$\text{C.}$ $a=\frac{2}{3}, b=-\frac{1}{3}, c=-\frac{1}{6}$.
$\text{D.}$ $a=\frac{4}{3}, b=\frac{1}{3}, c=\frac{1}{6}$.
设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$
$\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$
$\text{C.}$ $f^{\prime}(0)=1$
$\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$
设 $X_1, X_2 \ldots \ldots X_n(n \geq 2)$ 来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$ ,则下列结论中不正确的是(
$\text{A.}$ $\sum_{i=1}^n\left(X_i-\mu\right)^2$ 服从 $\chi^2$ 分布
$\text{B.}$ $2\left(X_n-X_1\right)^2$ 服从 $\chi^2$ 分布
$\text{C.}$ $\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 服从 $\chi^2$ 分布
$\text{D.}$ $n(\bar{X}-\mu)^2$ 服从 $\chi^2$ 分布
设 $X_1, X_2 \ldots \ldots X_n(n \geq 2)$ 来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$ ,则下列结论中不正确的是
$\text{A.}$ $\sum_{i=1}^n\left(X_i-\mu\right)^2$ 服从 $\chi^2$ 分布
$\text{B.}$ $2\left(X_n-X_1\right)^2$ 服从 $\chi^2$ 分布
$\text{C.}$ $\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 服从 $\chi^2$ 分布
$\text{D.}$ $n(\bar{X}-\mu)^2$ 服从 $\chi^2$ 分布