概率论与统计 期中测试

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
盒内有 12 个乒乓球, 其中 9 个是新球, 3 个是旧球。采取不放回抽取, 每次取一个, 直到取到新球为止。求抽取次数 $X$ 的概率分布。

车间中有 6 名工人在各自独立的工作, 已知每个人在 1 小时内有 12 分钟需用小吊车。
求 (1) 在同一时刻需用小吊车人数的最可能值是多少?
(2)若车间中仅有 2 台小吊车, 则因小吊车不够而聶误工作的概率是多少?

某种电子元件的寿命 $X$ 是随机变量, 其概率密度为
$$
p(x)=\left\{\begin{array}{cl}
\frac{C}{x^2} & x \geq 100 \\
0 & x < 100
\end{array}\right.
$$

求 (1) 常数 $C$;
(2) 若将 3 个这种元件串联在一条线路上, 试计算该线路使用 150 小时后仍能正常工作的概率。

某种电池的寿命(单位: 小时)是一个随机变量 $X$, 且 $X \sim N\left(300,35^2\right)$ 。
求(1)这样的电池寿命在 250 小时以上的概率;
(2) 求$a$ 使电池寿命在 $(300-a, 300+a)$ 内的概率不小于 0.9 。

设随机变量 $X \sim U\left[\begin{array}{ll}1, & 2\end{array}\right]$ 。
求 $Y=e^{2 X}$ 概率密度 $p_Y(y)$ 。

若随机变量 $X$ 服从泊松分布, 即 $X \sim P(\lambda)$, 且知 $E X^2=2$ 。求 $P\{X \geq 4\}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。