《复变函数与积分变换》期末考试模拟试卷



单选题 (共 5 题 ),每题只有一个选项正确
解析函数 $f(z)=u(x, y)+i v(x, y)$ 的导函数为( );
$\text{A.}$ $f^{\prime}(z)=u_x+i u_y$ ; $\text{B.}$ $f^{\prime}(z)=u_x-i u_y$ ; $\text{C.}$ $f^{\prime}(z)=u_x+i v_y$ ; $\text{D.}$ $f^{\prime}(z)=u_y+i v_x$ .

$C$ 是正向圆周 $|z|=3$ ,如果函数 $f(z)=(\quad)$ ,则 $\oint_C f(z) d z=0$ .
$\text{A.}$ $\frac{3}{z-2}$ ; $\text{B.}$ $\frac{3(z-1)}{z-2}$ ; $\text{C.}$ $\frac{3(z-1)}{(z-2)^2}$ ; $\text{D.}$ $\frac{3}{(z-2)^2}$ .

如果级数 $\sum_{n=1}^{\infty} c_n z^n$ 在 $z=2$ 点收敛,则级数在
$\text{A.}$ $z=-2$ 点条件收敛; $\text{B.}$ $z=2 i$ 点绝对收敛; $\text{C.}$ $z=1+i$ 点绝对收敛; $\text{D.}$ $z=1+2 i$ 点一定发散.

下列结论正确的是( )
$\text{A.}$ 如果函数 $f(z)$ 在 $z_0$ 点可导,则 $f(z)$ 在 $z_0$ 点一定解析; $\text{B.}$ 如果 $f(z)$ 在 C 所围成的区域内解析,则 $\oint_C f(z) d z=0$ $\text{C.}$ 如果 $\oint_C f(z) d z=0$ ,则函数 $f(z)$ 在 C 所围成的区域内一定解析; $\text{D.}$ 函数 $f(z)=u(x, y)+i v(x, y)$ 在区域内解析的充分必要条件是 $u(x, y) 、 v(x, y)$ 在该区域内均为调和函数.

下列结论不正确的是( )。
$\text{A.}$ $\infty$ 为 $\sin \frac{1}{z}$ 的可去奇点; $\text{B.}$ $\infty$ 为 $\sin z$ 的本性奇点; $\text{C.}$ $\infty$ 为 $\frac{1}{\sin \frac{1}{z}}$ 的孤立奇点; $\text{D.}$ $\infty$ 为 $\frac{1}{\sin z}$ 的孤立奇点.

填空题 (共 5 题 ),请把答案直接填写在答题纸上
$\frac{1-i \sqrt{3}}{2}$ 的幅角是

$\operatorname{Ln}(-1+i)$ 的主值是

$f(z)=\frac{1}{1+z^2}, f^{(5)}(0)=$

$z=0$ 是 $\frac{z-\sin z}{z^4}$ 的 ________ 极点

$f(z)=\frac{1}{z}$ ,$\operatorname{Res}[f(z), \infty]=(\quad) $

解答题 (共 7 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(z)=x^2+a x y+b y^2+i\left(c x^2+d x y+y^2\right)$ 是解析函数,求 $a, b, c, d$ .

计算 $ \oint_C \frac{e^z}{z(z-1)^2} d z$ 其中 $C $是正向圆周$|z|=2$

计算 $\oint_{|z|=3} \frac{z^{15}}{\left(1+z^2\right)^2\left(2+z^4\right)^3} d z$

函数 $f(z)=\frac{z\left(z^2-1\right)(z+2)^3(z-3)^2}{(\sin \pi z)^3}$ 在扩充复平面上有什么类型的奇点? ,如果有极点,请指出它的级.

将函数 $f(z)=\frac{1}{z^2(z-1)}$ 在以下区域内展开成罗朗级数
(1) $0 < |z-1| < 1$ ,(2) $0 < |z| < 1$ ,(3) $1 < |z| < \infty$

用 Laplace 变换求解常微分方程定解问题
$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)-5 y^{\prime}(x)+4 y(x)=e^{-x} \\
y(0)=y^{\prime}(0)=1
\end{array}\right.
$$

求$f(t)=e^{-\beta|t|}(\beta>0$的傅里叶变换,并证明
$$
\int_0^{+\infty} \frac{\cos \omega t}{\beta^2+\omega^2} d \omega=\frac{\pi}{2 \beta} e^{-\beta|t|}
$$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。