高等数学27

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
解方程$ \left(x^2+y^2+3\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x\left(2 y-\frac{x^2}{y}\right) $

设 $\Sigma_1$ 是以 $(0,4,0)$ 为顶点且与曲面 $\Sigma_2: \frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{3}=1(y>0)$ 相切的圆锥面, 求曲面 $\Sigma_1$ 与 $\Sigma_2$ 所围成的空间区域的体积.

设 $I_n=n \int_1^a \frac{\mathrm{d} x}{1+x^n}$, 其中 $a>1$. 求极限 $\lim _{n \rightarrow \infty} I_n$.

设 $f(x)$ 在 $[0,1]$ 上有连续的导数且 $f(0)=0$. 求证:
$$
\int_0^1 f^2(x) \mathrm{d} x \leqslant 4 \int_0^1(1-x)^2\left|f^{\prime}(x)\right|^2 \mathrm{~d} x
$$
并求使上式成为等式的 $f(x)$.

设数列 $\left\{x_n\right\}$ 满足 $x_0=\frac{1}{3}$, $x_{n+1}=\frac{x_n^2}{1-x_n+x_n^2}, n \geqslant 0$. 证明: 无穷级数 $\sum_{n=0}^{\infty} x_n$ 收敛并求其和.

设曲线 $y=3 a x^2+2 b x+\ln c$ 经过 $(0,0)$ 点, 且当 $0 \leqslant x \leqslant 1$ 时 $y \geqslant 0$. 设该曲线与直线 $x=1, x$ 轴所围图形的平面图形 $D$ 的面积为 1 . 试求常数 $a, b, c$ 的值, 使得 $D$ 绕 $x$ 轴一周后, 所得旋转体的体积最小.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。