函数与极限单选题与填空题

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
$x \rightarrow 0^{+}$时, 下列无穷小阶数最高的是
$\text{A.}$ $\int_0^x\left(\mathrm{e}^{t^2}-1\right) \mathrm{d} t$ $\text{B.}$ $\int_0^x \ln \left(1+\sqrt{t^3}\right) \mathrm{d} t$ $\text{C.}$ $\int_0^{\sin x} \sin t^2 \mathrm{~d} t$ $\text{D.}$ $\int_0^{1-\cos x} \sqrt{\sin ^3 t} \mathrm{~d} t$

下列函数在其定义域内有界的是
$\text{A.}$ $\frac{\sin x}{x}$ $\text{B.}$ $\tan x$ $\text{C.}$ $\frac{\ln x}{x}$ $\text{D.}$ $x e^{-x}$

关于函数 $y=x \ln x, x$ 定义域为 $(0,+\infty)$, 以下描述不正确的是
$\text{A.}$ 在区间 $\left(0, \mathrm{e}^{-1}\right)$ 单调递减 $\text{B.}$ 在 $\mathrm{x}=\mathrm{e}^{-1}$ 处取最小值 $\text{C.}$ $\left(e^{-1},-e^{-1}\right)$ 是曲线 $y=x \ln x$ 的拐点 $\text{D.}$ 曲线 $y=x \ln x$ 无渐近线

若函数 $f(x)=2^{\frac{1}{x}}+\arctan \frac{x|x|}{(x-1)(x-2)}$ 下面哪一条直线不是此函数的渐近线
$\text{A.}$ $x=0$ $\text{B.}$ $y=1-\frac{\pi}{4}$ $\text{C.}$ $x=2$ $\text{D.}$ $y=1+\frac{\pi}{4}$

已知 $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{(x-a)^2}=-1$, 则在 $x=a$ 处
$\text{A.}$ $f(x)$ 可导, 且 $f^{\prime}(a) \neq 0$. $\text{B.}$ $f(x)$ 取极大值. $\text{C.}$ $f(x)$ 取极小值. $\text{D.}$ $f(x)$ 导数不存在.

当 $x \rightarrow+\infty$ 时, $f(x)=\left(x^3-x^2+\frac{1}{2} x\right) \mathrm{e}^{\frac{1}{x}}-\sqrt{x^6+1}-\frac{1}{6}$ 是 $g(x)=\alpha x^\beta$ 等价无穷小, 则 $\alpha, \beta=$
$\text{A.}$ $\alpha=\frac{1}{2}, \beta=-1$ $\text{B.}$ $\alpha=\frac{1}{8}, \beta=-1$ $\text{C.}$ $\alpha=\frac{1}{8}, \beta=-2$ $\text{D.}$ $\alpha=\frac{1}{2}, \beta=-2$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。