2

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
关于函数 $y=x \ln x, x$ 定义域为 $(0,+\infty)$, 以下描述不正确的是
$\text{A.}$ 在区间 $\left(0, \mathrm{e}^{-1}\right)$ 单调递减 $\text{B.}$ 在 $\mathrm{x}=\mathrm{e}^{-1}$ 处取最小值 $\text{C.}$ $\left(e^{-1},-e^{-1}\right)$ 是曲线 $y=x \ln x$ 的拐点 $\text{D.}$ 曲线 $y=x \ln x$ 无渐近线

设 $f(x)=\frac{1}{1-x^2}$, 则 $f(x)$ 的一个原函数为
$\text{A.}$ $\arcsin x$ $\text{B.}$ $\arctan x$. $\text{C.}$ $\frac{1}{2} \ln \left|\frac{1-x}{1+x}\right|$ $\text{D.}$ $\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|$.

设 $I=\int \arctan x \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $x \arctan x-\ln \sqrt{x^2+1}+C$ $\text{B.}$ $x \arctan x-\ln \left|x^2+1\right|+C$ $\text{C.}$ $x \arctan x+\frac{1}{2}\left(x^2+1\right)+C$. $\text{D.}$ $\frac{1}{1+x^2}+C$.

设 $\int f(x) \mathrm{d} x=F(x)+C$, 则 $\int \frac{1}{x^2} f\left(\frac{2}{x}\right) \mathrm{d} x=$.
$\text{A.}$ $F\left(\frac{2}{x}\right)+C$. $\text{B.}$ $-F\left(\frac{2}{x}\right)+C$. $\text{C.}$ $-\frac{1}{2} F\left(\frac{2}{x}\right)+C$ $\text{D.}$ $2 F\left(\frac{2}{x}\right)+C$.

设在区间 $[a, b]$ 上 $f(x)>0, f^{\prime}(x) < 0, f^{\prime \prime}(x)>0$,
令 $S_1=\int_a^b-f(x) \mathrm{d} x, S_2=f(b)(b-a), S_3=\frac{1}{2}[f(b)+f(a)](b-a)$, 则有
$\text{A.}$ $S_1 < S_2 < S_3$. $\text{B.}$ $S_2 < S_1 < S_3$. $\text{C.}$ $S_3 < S_1 < S_2$. $\text{D.}$ $S_2 < S_3 < S_1$

$\int_{-1}^0|3 x+1| \mathrm{d} x= $.
$\text{A.}$ $\frac{5}{6}$ $\text{B.}$ $-\frac{5}{6}$. $\text{C.}$ $-\frac{3}{2}$. $\text{D.}$ $\frac{3}{2}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。