yan19

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
下列级数中条件收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty}(-1)^n\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$ $\text{B.}$ $\sum_{n=2}^{\infty} \frac{(-1)^n+1}{\ln n}$ $\text{C.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \ln (1+n)}$

设级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 $x=1$ 处条件收敛, 且 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=a$ 存在, 则
$\text{A.}$ $a=1$. $\text{B.}$ $a=-1$. $\text{C.}$ $a < 1$ $\text{D.}$ $a>1$.

设 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{\sin ^n x+\cos ^n x}\left(0 \leqslant x \leqslant \frac{\pi}{2}\right)$, 若 $F(x)$ 为 $f(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 内的原 函数, 则在 $\left[0, \frac{\pi}{2}\right]$ 内
$\text{A.}$ $F(x)$ 连续, $f(x)$ 可导. $\text{B.}$ $F(x)$ 不连续, $f(x)$ 不可导. $\text{C.}$ $F(x)$ 可导, $f(x)$ 可导. $\text{D.}$ $F(x)$ 可导, $f(x)$ 不可导.

设 $a_0=1, \sum_{n=0}^{\infty} 2 a_n x^{n+1}+\sum_{n=0}^{\infty}(n+1) a_{n+1} x^n=0$, 则级数 $\sum_{n=0}^{\infty} a_n=\quad$ )
$\text{A.}$ 1 $\text{B.}$ e $\text{C.}$ $-1$. $\text{D.}$ $\mathrm{e}^{-1}$.

设 $k>1$, 则级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{k n}+(-1)^n}$ 的敛散性为
$\text{A.}$ 绝对收敛. $\text{B.}$ 条件收敛. $\text{C.}$ 发散. $\text{D.}$ 收敛性与 $k$ 的取值有关.

若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则下列级数 (1) $\sum_{n=1}^{\infty}(-1)^n a_n$; (2) $\sum_{n=1}^{\infty}\left(a_n-2 a_{n+1}\right)$; (3) $\sum_{n=1}^{\infty} \sqrt{a_n}$;
(4) $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 中一定收敛的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。